Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Liang Zhu, ${ }^{\text {a }}{ }^{*}$ Qing-Fu Zeng, ${ }^{\text {a }}$ Dong-Sheng Xia, ${ }^{\text {a }}$ Xiu-Ying Liu ${ }^{\text {a }}$ and Da-Qi Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China

Correspondence e-mail: hlzhu@wist.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.045$
$w R$ factor $=0.145$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Bis\{2-[(3-cyclohexylaminopropyl-imino)methyl]phenolato\}dithiocyanatonickel(II)

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right)_{2}(\mathrm{NCS})_{2}\right]$, a mononuclear complex possessing C_{i} symmetry, the $\mathrm{Ni}^{\mathrm{II}}$ atom is coordinated by six atoms from two Schiff bases and two thiocyanate anions. In the crystal structure, molecules are held together by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, which link the molecules along the b axis to form one-dimensional chains.

Comment

The title compound, (I), is a discrete electronically neutral centrosymmetric mononuclear nickel(II) complex (Fig. 1). The central Ni atom is in an octahedral geometry and coordinates to two Schiff base ligands and two thiocyanate groups. The Schiff base acts as a bidentate ligand and ligates to atom Ni1 through the phenolate O and imine N atoms. The thiocyanate anion is a monodentate ligand and coordinates to the metal via the N atom. The three diagonal angles for the nickel(II) octahedron are all 180°, from symmetry, and all other angles around atom Ni1 are close to 90°, varying from 87.27 (14) to $92.73(14)^{\circ}$, which indicates a slightly distorted octahedral geometry around the Ni atom. The $\mathrm{Ni} 1-\mathrm{O} 1$ (phenolate O atom) bond length of 2.030 (3) \AA is comparable to the value of 2.013 (5) \AA observed in a salicylaldehyde nickel(II) complex (Steward et al., 1961). The Ni1 - N1 bond distance of 2.078 (3) \AA (imine N atom) is close to the value of $2.068(3) \AA$ observed in the complex $\left[\mathrm{Ni}_{2}(\mathrm{tp})(\text { pren })_{4}\right.$ (Him$\left.)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Zhu et al., 2001), (where tp is terephthalate, pren is 1,3 -diaminopropane and Him is imidazole). The NCS angle of $178.7(4)^{\circ}$ in the coordinated thiocyanate anions is comparable to that observed in other nickel(II) complexes with NCS^{-}anions.

In the crystal structure, the molecules are connected by intermolecular $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$ hydrogen bonds (see Fig. 2 and Table 1) to form columns parallel to the b axis (Fig. 3). As expected, the cyclohexyl groups in the complex adopt chair conformations to minimize steric effects.

Experimental

N-cyclohexyl-1,3-diaminopropane and salicylaldehyde were available commercially and were used without further purification. N-cyclo-hexyl-1,3-diaminopropane ($2.0 \mathrm{mmol}, 312 \mathrm{mg}$) and salicylaldehyde $(2.0 \mathrm{mmol}, 244 \mathrm{mg})$ were dissolved in methanol $(10 \mathrm{ml})$. The mixture

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code: (A) $1-x, 1-y,-z$.]

Figure 2
The crystal packing of (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen-bonding interactions as dashed lines.

Figure 3
The crystal packing of (I), viewed along the b axis. H atoms have been omitted for clarity.
was stirred for ca 30 min to obtain a clear yellow solution of L (2.0 mmol), where L is 2-[(3-cyclohexylaminopropylimino)methyl]phenol. To the solution of L was added a solution of $\mathrm{Ni}(\mathrm{NCS})_{2}$ ($1.0 \mathrm{mmol}, 175 \mathrm{mg}$) in pyridine, with stirring. After keeping the resulting solution in air for 5 d , petal-like green crystals were formed on slow evaporation of the solvents. The crystals were isolated, washed with methanol three times and dried in a vacuum desiccator using CaCl_{2} (yield 52%). Analysis found: C 59.06, H $6.76, \mathrm{~N} 12.10 \%$; calculated for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{NiO}_{2} \mathrm{~S}_{2}$: C 58.88, H 6.68, N 12.12%.

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\right)_{2}(\mathrm{NCS})_{2}\right]$
$D_{x}=1.318 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=693.60$
Monoclinic, $P 2_{d} / c$
$a=10.906$ (7) A
$b=7.796$ (5) \AA 。
$c=20.721$ (13) \AA
$\beta=97.131$ (11) ${ }^{\circ}$
$V=1748.0(18) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
Cell parameters from 1432 reflections
$\theta=2.6-18.5^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.24 \times 0.22 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.847, T_{\max }=0.888$
8924 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.145$
$S=0.94$
3085 reflections
209 parameters

3085 independent reflections
1857 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 24$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0718 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.48$ e \AA^{-3}
$\Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.922(10)$	$2.433(12)$	$3.348(4)$	$171(3)$

Symmetry code: (i) $1-x,-y,-z$.

The amino H atom was located from a difference Fourier synthesis and refined isotropically. All the $\mathrm{C}-\mathrm{H}$ atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values equal to $1.2 U_{\text {eq }}$ of the parent C atom.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Hubei Province, People's Republic of China, for research grant No. 2002B29002 and the Natural Science Foundation of Hubei Province, People's Republic of China, for research grant No. 2003ABB010.

metal-organic papers

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Steward, J. M., Lingafelter, E. C. \& Breazeale, J. D. (1961). Acta Cryst. 14, 888891.

Zhu, H.-L., Tong, Y.-X., Chen, X.-M. \& Ren, C.-X. (2001). Transition Met. Chem. 26, 528-531.

